

 Graphql Markdown

 v0.5.1

 Table of contents

 	Changelog

 	Readme

 	License

 	Contributing

 	Contributor Code of Conduct

 	
 Modules

 	GraphqlMarkdown

 	GraphqlMarkdown.MarkdownHelpers

 	GraphqlMarkdown.MultiPage

 	GraphqlMarkdown.OperationDetailsHelpers

 	GraphqlMarkdown.Renderer

 	GraphqlMarkdown.Schema

 	GraphqlMarkdown.SinglePage

 	
 Mix Tasks

 	mix graphql_gen_markdown

Changelog

 0.5.1 - 2025-03-11

 Fixed

	Add support for NON_NULL GraphQL types

 0.5.0 - 2024-10-01

 Changed

	Remove support for Elixir 1.13. Minimum is now 1.14

 0.4.3 - 2024-09-27

 Fixed

	Fixes where NonNull and ListTypes were defaulting to scalar types for anchor links

 0.4.2 - 2024-09-26

 Fixed

	Links to union return types handled correctly

 0.4.1 - 2024-09-25

 Fixed

	Links to types from queries/mutations sets anchor properly

 0.4.0 - 2024-08-26

 Added

	Added support for Subscriptions

 0.3.1 - 2024-07-01

 Fixed

	Fix problems with generating example queries and mutations when the return types are unions, interfaces or lists: #49

 0.3.0 - 2024-06-25 [RETIRED]

 Added

	Support generating example queries from the schema

 0.2.1 - 2024-03-26

 Changed

	Improve documentation
	Fix generating multiple times

 0.2.0 - 2024-01-12

 Changed

	Deps Update release

 0.1.5 - 2023-08-16

 Changed

	Added more documentation
	Fix typespec

 0.1.4 - 2022-09-27

 Changed

	Update dependencies

 0.1.3 - 2021-09-23

 Fixed

	Add missing type and description for mutations and queries

 0.1.2 - 2021-09-17

 Fixed

	Support for Unions properly
	Fix breakage when description is nil

 0.1.1 - 2021-09-17

 Fixed

	Fix wrong link in multi page for scalar/objects

 0.1 - 2021-09-17

Initial release

GraphqlMarkdown

Converts a JSON Graphql Schema to Markdown

 Installation

If available in Hex, the package can be installed
by adding graphql_markdown to your list of dependencies in mix.exs:
def deps do
 [
 {:graphql_markdown, "~> 0.4.3"}
]
end
And run:
mix deps.get

Generate a single file called graphql_schema.md in the current dir:
mix graphql_gen_markdown -f ./schema.json

Documentation can be generated with ExDoc
and published on HexDocs. Once published, the docs can
be found at https://hexdocs.pm/graphql_markdown.

 Quick Start

You can generate either single page with all the types or a multipage that will then generate separately Mutations, Queries, Enums etc, each in a different file.

 Single page

When you run the following
mix graphql_gen_markdown -f ./schema.json

it will generate the following file in your current folder:
./graphql_schema.md
You can change the default title for the single page with -t option.

 Multi pages

When you run the following
mix graphql_gen_markdown -f ./schema.json -m

it will generate the following files in your current folder:
 ./queries.md
 ./mutations.md
 ./subscriptions.md
 ./objects.md
 ./inputs.md
 ./enums.md
 ./scalars.md
 ./interfaces.md
 ./unions.md

 Integrate with ExDoc and Absinthe

You can easily automate the process with ExDoc by adding the following to your mix.exs file:
defmodule Azeroth.MixProject do
 use Mix.Project

 # this is needed because the file are generated but if you run mix docs, Mix will check the existence of files first. so have to work around that
 @graphql_files [
 "guides/graphql/enums.md",
 "guides/graphql/inputs.md",
 "guides/graphql/interfaces.md",
 "guides/graphql/mutations.md",
 "guides/graphql/objects.md",
 "guides/graphql/queries.md",
 "guides/graphql/scalars.md",
 "guides/graphql/unions.md",
 "guides/graphql/subscriptions.md"
]
 ...

 defp aliases do
 [
 docs: [
 "absinthe.schema.json",
 "graphql_gen_markdown -f schema.json -o guides/graphql -m",
 "docs"
],...
]
Make sure the absinthe schema is specified or generated with that name. Or add to your config.exs:
config :absinthe, schema: YouApp.GraphQL.Schema

 Documentation

Documentation is available on Hexdocs

 Contributing

	Fork it!
	Create your feature branch (git checkout -b my-new-feature)
	Commit your changes (git commit -am 'Add some feature')
	Push to the branch (git push origin my-new-feature)
	Create new Pull Request

 Author

Emmanuel Pinault (@epinault)

 License

GraphqlMarkdown is released under the MIT License. See the LICENSE.md file for further details.

License

MIT License
Copyright (c) 2021 Emmanuel Pinault
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Contributing to Graphql Markdown

Please take a moment to review this document in order to make the contribution
process easy and effective for everyone involved!
Also make sure you read our Code of Conduct that outlines our commitment towards an open and welcoming environment.

 Using the issue tracker

Use the issues tracker for:
	Bug reports
	Submitting pull requests

We do our best to keep the issue tracker tidy and organized, making it useful
for everyone. For example, we classify open issues per perceived difficulty,
making it easier for developers to contribute to Graphql Markdown.

 Bug reports

A bug is either a demonstrable problem that is caused by the code in the repository,
or indicate missing, unclear, or misleading documentation. Good bug reports are extremely
helpful - thank you!
Guidelines for bug reports:
	Use the GitHub issue search — check if the issue has already been
reported.

	Check if the issue has been fixed — try to reproduce it using the
master branch in the repository.

	Isolate and report the problem — ideally create a reduced test
case.

Please try to be as detailed as possible in your report. Include information about
your Operating System, as well as your Erlang, Elixir and Graphql Markdown versions. Please provide steps to
reproduce the issue as well as the outcome you were expecting! All these details
will help developers to fix any potential bugs.
Example:
Short and descriptive example bug report title
A summary of the issue and the environment in which it occurs. If suitable,
include the steps required to reproduce the bug.
	This is the first step
	This is the second step
	Further steps, etc.

<url> - a link to the reduced test case (e.g. a GitHub Gist)
Any other information you want to share that is relevant to the issue being
reported. This might include the lines of code that you have identified as
causing the bug, and potential solutions (and your opinions on their
merits).

 Contributing Documentation

Code documentation (@doc, @moduledoc, @typedoc) has a special convention:
the first paragraph is considered to be a short summary.
For functions, macros and callbacks say what it will do. For example write
something like:
@doc """
Marks the given value as HTML safe.
"""
def safe({:safe, value}), do: {:safe, value}
For modules, protocols and types say what it is. For example write
something like:
defmodule MyModule do
 @moduledoc """
 Conveniences for working HTML strings and templates.
 ...
 """
Keep in mind that the first paragraph might show up in a summary somewhere, long
texts in the first paragraph create very ugly summaries. As a rule of thumb
anything longer than 80 characters is too long.
Try to keep unnecessary details out of the first paragraph, it's only there to
give a user a quick idea of what the documented "thing" does/is. The rest of the
documentation string can contain the details, for example when a value and when
nil is returned.
If possible include examples, preferably in a form that works with doctests.
This makes it easy to test the examples so that they don't go stale and examples
are often a great help in explaining what a function does.

 Pull requests

Good pull requests - patches, improvements, new features - are a fantastic
help. They should remain focused in scope and avoid containing unrelated
commits.
IMPORTANT: By submitting a patch, you agree that your work will be
licensed under the license used by the project.
If you have any large pull request in mind (e.g. implementing features,
refactoring code, etc), please ask first otherwise you risk spending
a lot of time working on something that the project's developers might
not want to merge into the project.
Please adhere to the coding conventions in the project (indentation,
accurate comments, etc.) and don't forget to add your own tests and
documentation. When working with git, we recommend the following process
in order to craft an excellent pull request:
	Fork the project, clone your fork,
and configure the remotes:
Clone your fork of the repo into the current directory
git clone https://github.com/<your-username>/graphql_markdown

Navigate to the newly cloned directory
cd graphql_markdown

Assign the original repo to a remote called "upstream"
git remote add upstream https://github.com/podium/graphql_markdown

	If you cloned a while ago, get the latest changes from upstream, and update your fork:
git checkout master
git pull upstream master
git push

	Create a new topic branch (off of master) to contain your feature, change,
or fix.
IMPORTANT: Making changes in master is discouraged. You should always
keep your local master in sync with upstream master and make your
changes in topic branches.
git checkout -b <topic-branch-name>

	Commit your changes in logical chunks. Keep your commit messages organized,
with a short description in the first line and more detailed information on
the following lines. Feel free to use Git's
interactive rebase
feature to tidy up your commits before making them public.

	Make sure all the tests are still passing.
mix test

	Push your topic branch up to your fork:
git push origin <topic-branch-name>

	Open a Pull Request
 with a clear title and description.

	If you haven't updated your pull request for a while, you should consider
rebasing on master and resolving any conflicts.
IMPORTANT: Never ever merge upstream master into your branches. You
should always git rebase on master to bring your changes up to date when
necessary.
git checkout master
git pull upstream master
git checkout <your-topic-branch>
git rebase master

Thank you for your contributions!

 Guides

These Guides aim to be inclusive. We use "we" and "our" instead of "you" and
"your" to foster this sense of inclusion.
Ideally there is something for everybody in each guide, from beginner to expert.
This is hard, maybe impossible. When we need to compromise, we do so on behalf
of beginning users because expert users have more tools at their disposal to
help themselves.
The general pattern we use for presenting information is to first introduce a
small, discrete topic, then write a small amount of code to demonstrate the
concept, then verify that the code worked.
In this way, we build from small, easily digestible concepts into more complex
ones. The shorter this cycle is, as long as the information is still clear and
complete, the better.
For formatting the guides:
	We use the elixir code fence for all module code.
	We use the iex for IEx sessions.
	We use the console code fence for shell commands.
	We use the html code fence for html templates, even if there is elixir code
in the template.
	We use backticks for filenames and directory paths.
	We use backticks for module names, function names, and variable names.
	Documentation line length should hard wrapped at around 100 characters if possible.

Contributor Code of Conduct

As contributors and maintainers of this project, and in the interest of fostering an open and welcoming community, we pledge to respect all people who contribute through reporting issues, posting feature requests, updating documentation, submitting pull requests or patches, and other activities.
We are committed to making participation in this project a harassment-free experience for everyone, regardless of level of experience, gender, gender identity and expression, sexual orientation, disability, personal appearance, body size, race, ethnicity, age, religion, or nationality.
Examples of unacceptable behavior by participants include:
	The use of sexualized language or imagery
	Personal attacks
	Trolling or insulting/derogatory comments
	Public or private harassment
	Publishing other's private information, such as physical or electronic addresses, without explicit permission
	Other unethical or unprofessional conduct.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct. By adopting this Code of Conduct, project maintainers commit themselves to fairly and consistently applying these principles to every aspect of managing this project. Project maintainers who do not follow or enforce the Code of Conduct may be permanently removed from the project team.
This code of conduct applies both within project spaces and in public spaces when an individual is representing the project or its community.
Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by opening an issue or contacting one or more of the project maintainers.
This Code of Conduct is adapted from the Contributor Covenant, version 1.2.0, available at https://www.contributor-covenant.org/version/1/2/0/code-of-conduct/

GraphqlMarkdown

Converts a GraphQL JSON schema to a markdown format

 Summary

 Functions

 generate(options)

 Perform the conversion to generate the markdown files

 Functions

 generate(options)

 @spec generate(keyword()) :: {:ok, [binary()]} | {:error, any()}

Perform the conversion to generate the markdown files

GraphqlMarkdown.MarkdownHelpers

A set of helpers to generate proper markdown easily

 Summary

 Functions

 anchor(text, anchor_text \\ nil)

 code(text)

 default_value(defaultValue)

 graphql_operation_code_block(operation_details)

 Generates a code block for a GraphQL operation. Only the top-level fields returned are represented in the code block.
When one of the fields returned is an object, the object's fields are not included in the code block.

 header(text, level, capitalize \\ false)

 link(text, url \\ nil)

 list(text, level, capitalize \\ false)

 new_line()

 table(fields, rows)

 Functions

 anchor(text, anchor_text \\ nil)

 @spec anchor(String.t(), String.t() | nil) :: String.t()

 code(text)

 @spec code(String.t()) :: String.t()

 default_value(defaultValue)

 @spec default_value(any()) :: String.t()

 graphql_operation_code_block(operation_details)

 @spec graphql_operation_code_block(
 GraphqlMarkdown.OperationDetailsHelpers.graphql_operation_details()
) ::
 String.t()

Generates a code block for a GraphQL operation. Only the top-level fields returned are represented in the code block.
When one of the fields returned is an object, the object's fields are not included in the code block.
Example:
 mutation RefreshIdToken($refreshToken: String!) {
 refreshIdToken(refreshToken: $refreshToken) {
 idToken
 userSsoDetails {
 }
 }
 }
 In this example, the idToken field is a scalar, so it is included in the code block.
 In this example the userSsoDetails field is an object, so its fields are not included in the code block.

 header(text, level, capitalize \\ false)

 @spec header(String.t(), non_neg_integer(), boolean()) :: String.t()

 link(text, url \\ nil)

 @spec link(String.t(), String.t() | nil) :: String.t()

 list(text, level, capitalize \\ false)

 @spec list(String.t(), non_neg_integer(), boolean()) :: String.t()

 new_line()

 @spec new_line() :: String.t()

 table(fields, rows)

 @spec table(list(), list()) :: String.t()

GraphqlMarkdown.MultiPage

Multi page generator from Graphql to Markdown

 Summary

 Functions

 generate_section(type, details, schema_details)

 render_schema(schema_details, options)

 Functions

 generate_section(type, details, schema_details)

 render_schema(schema_details, options)

GraphqlMarkdown.OperationDetailsHelpers

A set of helpers to generate query and mutation details.

 Summary

 Types

 argument()

 field()

 graphql_operation_details()

 return_type()

 Functions

 generate_operation_details(type, field, schema_details)

 Creates a map with the details of a query or mutation. The details created include
the operation type, operation name, arguments, and return type.

 Types

 argument()

 @type argument() :: %{name: String.t(), type: String.t(), required: boolean()}

 field()

 @type field() :: %{name: String.t(), type: String.t()}

 graphql_operation_details()

 @type graphql_operation_details() :: %{
 operation_type: String.t(),
 operation_name: String.t(),
 arguments: [argument()],
 return_type: return_type()
}

 return_type()

 @type return_type() :: %{
 name: String.t(),
 kind: String.t(),
 fields: [field()],
 possible_types: [field()]
}

 Functions

 generate_operation_details(type, field, schema_details)

 @spec generate_operation_details(String.t(), map(), GraphqlMarkdown.Schema.t()) ::
 graphql_operation_details()

Creates a map with the details of a query or mutation. The details created include
the operation type, operation name, arguments, and return type.

GraphqlMarkdown.Renderer

A Genserver to renderer message to stiod by default or to file if specifying a filename when starting

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 init(options)

 Callback implementation for GenServer.init/1.

 render(message, renderer \\ :default_renderer)

 render_newline(renderer \\ :default_renderer)

 save(renderer \\ :default_renderer)

 start_link(options \\ [])

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 init(options)

Callback implementation for GenServer.init/1.

 render(message, renderer \\ :default_renderer)

 render_newline(renderer \\ :default_renderer)

 save(renderer \\ :default_renderer)

 start_link(options \\ [])

GraphqlMarkdown.Schema

Internal Schema representation of Graphql section we care about

 Summary

 Types

 t()

 test

 Functions

 enum_kind()

 field_kind(type)

 field_type(type)

 find_and_sort_type(types, field, value, sort_by \\ "name")

 full_field_type(type)

 input_kind()

 interface_kind()

 mutation_type(schema)

 object_kind()

 query_type(schema)

 scalar_kind()

 schema_from_json(arg1)

 subscription_type(schema)

 types(schema)

 union_kind()

 Types

 t()

 @type t() :: %GraphqlMarkdown.Schema{
 enums: [map()],
 inputs: [map()],
 interfaces: [map()],
 mutations: [map()],
 objects: [map()],
 queries: [map()],
 scalars: [map()],
 subscriptions: [map()],
 unions: [map()]
}

 test

 Functions

 enum_kind()

 field_kind(type)

 field_type(type)

 find_and_sort_type(types, field, value, sort_by \\ "name")

 full_field_type(type)

 input_kind()

 interface_kind()

 mutation_type(schema)

 object_kind()

 query_type(schema)

 scalar_kind()

 schema_from_json(arg1)

 subscription_type(schema)

 types(schema)

 union_kind()

GraphqlMarkdown.SinglePage

Single page generator from Graphql to Markdown

 Summary

 Functions

 generate_section(type, details, schema_details)

 generate_sections(schema_details)

 render_schema(schema_details, options)

 Functions

 generate_section(type, details, schema_details)

 generate_sections(schema_details)

 render_schema(schema_details, options)

 @spec render_schema(
 GraphqlMarkdown.Schema.t(),
 keyword()
) :: :ok | {:error, :renderer_error}

mix graphql_gen_markdown

A mix task to convert a GraphQL JSON schema to markdown

 usage

mix graphql_gen_markdown [OPTIONS]
valid override args:
 -f, --schema Path to the schema file
 -o, --output-dir Where to output the files. Default: [Current Directory]
 -m, --multi-page Generate each type in a separate file. Default: [single page format]
 -t, --title Specify the page title for the generated file (Applies to single file only)
 --no-toc Do not generate the table of content (Applies to single file only)

 Examples

	Convert the GraphQL JSON schema to a single markdown file

mix graphql_gen_markdown -f myschema.json
	Convert the GraphQL JSON schema to a multiple markdown file

mix graphql_gen_markdown -f myschema.json -m

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

